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Abstract The changes that vacancies produce in the properties of hcp solid 4He
are studied by means of quantum Monte Carlo methods. Our results show that the
introduction of vacancies produces significant changes in the behavior of solid 4He,
even when the vacancy concentration is very small. We show that there is an onset
temperature where the properties of incommensurate 4He change significantly. Below
this temperature, we observe the emergence of off-diagonal long range order and a
complete spatial delocalization of the vacancies. This temperature is quite close to the
temperature where non-classical rotational inertia has been experimentally observed.
Finally, we report results on the influence of vacancies in the elastic properties of hcp
4He at zero temperature.

Keywords Solid 4He · Superfluidity · Bose-Einstein condensation · Vacancies ·
Quantum Monte Carlo

1 Introduction

The counterintuitive concept of supersolidity can only be understood in terms of ex-
tremely quantum matter. The simultaneous existence of spatial solid order, character-
istic of the solid state, and superfluidity, property that in principle requires of mass
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movement without friction, is hardly understandable in usual solids. The natural can-
didate for this fascinating possibility has been along the time always the same, solid
4He. The solid phase of 4He is not a normal solid, in the classical meaning of this
term. 4He atoms have so small mass and shallow interaction that its stable condensed
phase, in the limit of zero temperature, is a liquid and thus a finite pressure is required
to crystallize it. Even in the crystal phase, the zero-point motion of the 4He atoms is
not fully depressed as it is explicitly quantified by its large Lindemann ratio and im-
pressively large kinetic energy, with respect to typical classical values. Furthermore,
the exchange frequency, which is absolutely absent in classical solids, is low but not
zero. Altogether makes the study of a quantum solid a very interesting topic, the
possibility of a supersolid scenario being one of its more stimulating possibilities.

The recent experimental findings by Kim and Chan [1, 2] on the existence of a
non-zero fraction of non-classical moment of inertia (NCRI) in torsional oscillator
measurements have revived this topic that emerged in the past as an hypothetical
theoretical conjecture. This unexpected result has been corroborated by other labo-
ratories, although the dispersion in the size of the effect is large [3]. From the very
beginning, it was clear that the way in which the crystal is produced, the annealing
during its growth and the purity of the 4He sample were, among others, relevant pa-
rameters which introduce changes of the NCRI fraction of an order of magnitude.
The decoupling of a part of the mass, measured in the torsional oscillator, is observed
at an onset temperature which also depends on the particular conditions of the ex-
periment, but its fluctuation is sizeably smaller than the one obtained for the NCRI
fraction (superfluid fraction). Very close to the onset temperature for supersolidity it
has been observed an increase in the shear modulus of hcp 4He, its temperature de-
pendence being similar in shape to the one of NCRI [4]. The interplay between this
anomalous elastic behavior and the NCRI effect observed in torsional oscillators has
been object of theoretical debate: it seems clear that part of the NCRI effect can be
attributed to elasticity but probably not all.

To date, there is not a complete theoretical understanding of the observed phe-
nomena. A point in which the community working in this field has reached an overall
agreement is the absence of any supersolid signal in a perfect crystal, i.e., a crystal
where the number of particles and the number of sites matches exactly. The superso-
lidity is then attributed to alterations of the perfect crystal due to the disorder intro-
duced by defects, that inevitably appear during its growing process from the liquid
phase. The major role has been assigned to dislocations and their mobility in relation
with the pining/depining of 3He impurities to them. But, even if dislocations can be
in the origin of experimental NCRI they can not be the only explanation since the su-
perfluidity of hcp 4He in bulk or in vycor is nearly the same, whereas the dislocation
density is reasonably expected to be very different. Another possibility, that has been
theoretically explored from long time is the presence of a fraction of point defects,
i.e., vacancies.

Vacancies were originally proposed by Andreev and Lifshitz [5] as a mechanism
for creating a supersolid phase in solid helium. This scenario was rebuked by ex-
perimental and theoretical findings showing that vacancies are energetically too ex-
pensive to be created by thermal activation. However, Rossi et al. [6] showed using
a variational estimate that wavefunctions that are able to describe well the equation
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of state of solid 4He support a finite vacancy concentration between 10−6 and 10−3.
This possibility is yet to be tested with first principles calculations, as the number of
helium atoms that corresponds to such low concentrations is still too large to handle.
Even such low vacancy concentrations should be experimentally significant, given
the observed influence of sub-ppm concentrations of 3He [7]. Notice that as a quasi-
particle in hcp 4He, a vacancy is in many ways similar to a 3He impurity.

Even if thermal activation of vacancies seems improbable at very low tempera-
ture it is reasonable to consider that a significant number of vacancies can be intro-
duced into solid samples during their growth. Eventually, some of them can disap-
pear by migrating to dislocations or grain boundaries but one cannot exclude a priori
that a tiny fraction of vacancies can dissolve into the bulk crystal. It was, however,
argued [8] that even if initially vacancy-rich, solid hcp 4He would phase separate
into a vacancy-rich phase and a perfect, insulating crystal and therefore any growth-
introduced vacancies will be effectively removed from the experimental samples. On
the other hand, our detailed studies with several vacancies show no sign of vacancy
clustering [9, 10].

In this work, we report recent results on the properties of vacancies in a fully
quantum crystal like 4He obtained using different quantum Monte Carlo methods. In
Sect. 2, we describe the microscopic methods used in the present analysis. In Sect. 3,
we present PIMC results on the one-body density matrix of hcp solid 4He as a func-
tion of temperature, showing the onset temperature where both Bose-Einstein con-
densation and vacancy delocalization appear. Section 4 comprises results of the shear
modulus at zero temperature and as a function of the pressure. Finally, an account of
the main conclusions of the present work is included in Sect. 5.

2 Quantum Monte Carlo Methods in the Study of Solid 4He

A quantitatively accurate study of solid 4He is demanding due to the high density
of the system and strong interparticle correlations. If a microscopic approximation
to the system is pursued, the most powerful tool is quantum Monte Carlo with sev-
eral methods to deal properly with zero or finite temperature simulations. The final
goal is to get relevant microscopic information, on both energy and structure, start-
ing directly from the Hamiltonian of the system. The helium interatomic potential is
accurately known and there are several models that are able to describe its equation
of state very well. In the present work, we have used an Aziz potential [11] that has
proven to be very accurate in the reproduction of the equation of state P(ρ) in both
liquid and solid 4He.

Calculations at zero temperature have been performed with diffusion Monte Carlo
(DMC). DMC is a zero-temperature first-principles method which can access exactly
the ground state of bosonic systems. It is a form of Green’s Function Monte Carlo
which samples the projection of the ground state from the initial configuration with
the operator exp[−(H − E0)τ ]. Here, H is the system Hamiltonian, E0 is a norm-
preserving adjustable constant and τ is the variable which corresponds to imaginary
time. The simulation is performed by advancing in τ via a combination of diffusion,
drift and branching steps on walkers (sets of 3N coordinates) representing the wave-
function of the system.
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One of the advantages of DMC lies in the convenient incorporation of the im-
portance sampling. The imaginary time evolution of the walkers is “guided” during
the drift stage by a guiding wavefunction φG, which is usually a good guess for the
wavefunction of the system. When a guiding wavefunction is used, the expectation
value of an operator A computed with DMC results in a value equal to 〈φ0|A |φG〉,
where φ0 is the ground state wavefunction of the system. This leads to a common
misunderstanding regarding the bias resulting from the choice of φG. In fact, it is
straightforward to show that for the Hamiltonian H and any operator commuting
with it, the expectation value is computed exactly within statistical error. That is,
if [A ,H ] = 0, then 〈φ0|A |φG〉 = 〈φ0|A |φ0〉 for any φG such that 〈φ0|φG〉 �= 0. In
practice, one usually demands that the DMC results are not sensitive to small changes
in parameters describing φG, if the parameters are sufficiently close to the optimal
values. The use of the importance sampling is the reason why DMC results agree so
precisely with a wide range of energetic and structural experimental data, both for
liquid and solid 4He.

The wavefunction that we use for the importance sampling of solid helium is a
symmetrization of the well-known Nosanow–Jastrow [12] wavefunction. The sym-
metrized version has the form

φSNJ =
(Np∏

i<j

f
(|r i − rj |

))(
Ns∏
k

Np∑
i

g
(|r i − lk|

))
. (1)

The first term in φSNJ is the McMillan product of pair correlation functions f (r) =
exp[−1/2 (b/r)5]. The second term describes the lattice structure. Here r and l de-
scribe respectively positions of the Np atoms and Ns lattice sites. The localizing
function g(r) is set to a Gaussian, g(r) = exp(−1/2γ r2). The two parameters, b and
γ , are obtained from optimization of the unsymmetrized form of the function, as de-
scribed in Ref. [13]. This allows for excellent convergence, including insensitivity of
results with respect to changes in the parameters, as described above.

The symmetrized wavefunction of Eq. (1) is an excellent and, at the same time,
simple description of a quantum crystal. Already on the variational level, this wave-
function is capable of predicting the solid-to-liquid transition for 4He (optimized γ

experiences a discontinuous jump to γ = 0, corresponding to the liquid phase), which
by itself is a very remarkable result. The second lattice term in φSNJ is a product of
sums over all particles. The product is maximized when the smallest possible num-
ber of the sums is vanishingly small. This corresponds to largest possible number of
lattice sites being occupied. The product therefore includes all possible permutations
of atoms on the lattice, but the atoms are more likely to occupy maximum number
of sites in each permutation. Interstitials are allowed but have a built-in probability
penalty, as it should be. Exchanges between atoms are allowed by construction. Va-
cancies may be introduced by using Np < Ns , which only changes the norm of φSNJ.
Structural defects may be created by perturbing the set of the lattice sites {l}. This
wavefunction was first introduced and tested with DMC for quantum solids by Ca-
zorla et al. [14] and has been since then applied to a range of problems including
elasticity [15] and point defects [10, 13] in solid 4He, and even quantum crystals of
atoms excited to the Rydberg states [16].
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We are also interested in the behavior of vacancies in solid 4He at finite tem-
perature. In this case, the appropriate theoretical tool is the path integral Monte Carlo
(PIMC) method. Starting from the Hamiltonian H and the temperature T = (kBβ)−1

of the system, it is possible to rewrite the partition function Z making use of the con-

volution property that the thermal density matrix ρ(R′,R;β) = 〈R′|e−βĤ |R〉 satis-
fies,

Z = Tr
(
e−βH ) �

∫ M∏
i=1

dRiρ(Ri ,Ri+1; ε), (2)

with ε = β/M , and the boundary condition RM+1 = R1.
PIMC describes the quantum N -body system considering M different configura-

tions Rj of the same system, whose sequence constitutes a path in imaginary time.
This means that the N -body quantum system is mapped onto a classical system of N

ring polymers, each one composed by M beads. The different beads can be thought
as a way to describe the delocalization of the quantum particle due to its zero-point
motion.

For sufficiently large M , we recover the high-temperature limit for the thermal
density matrix, where it is legitimate to separate the kinetic contribution from the
potential one (primitive action). In this way, it is possible to reduce the systematic
error due to the analytical approximation for ρ below the statistical uncertainties
and therefore to recover “exactly” the thermal equilibrium properties of the system.
However, the primitive action is too simple for studying extreme quantum matter
and a better choice for the action is fundamental to reduce the complexity of the
calculation and ergodicity issues. Using the Chin action [17, 18], we are able to obtain
an accurate estimation of the relevant physical quantities with reasonable numeric
effort even in the low temperature regime, where the simulation becomes harder due
to the large zero-point motion of particles.

An additional problem we have to deal with when approaching the low temper-
ature limit with PIMC simulations arises from the indistinguishable nature of 4He
atoms. In the path integral formalism, the exchanges between L different particles
are represented by long ring polymer composed by L × M beads. If we study a
bosonic system, the indistinguishability of the particles does not affect the positivity
of the integrand function in Eq. (2) and thus the symmetry of Z can be recovered
via the direct sampling of permutations between the ring polymers. A very efficient
sampling scheme that we have used in the present study is provided by the Worm
Algorithm [19].

The formation of long permutation cycles is a frequent event at very low tem-
perature and polymers which close themselves winding the periodic boundary con-
ditions of the simulation box can appear in the PIMC configurations. The winding
number, that is the net number of times the paths of the polymers wind around the
periodic cell, is an important quantity since it is related to the superfluid fraction of
the system [20]. In particular, the appearance of polymers presenting non-zero wind-
ing numbers in PIMC configurations gives indication of superfluidity in the simulated
system.
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Fig. 1 The one-body density
matrix ρ1(r) for an hcp crystal
with vacancy concentration
Xv = 1/180 at density
ρ = 0.0294 Å−3 and at different
temperatures: T = 1 K
(triangles down), T = 0.75 K
(triangles up), T = 0.5 K
(diamonds), T = 0.25 K
(squares) and T = 0.2 K
(circles). The dotted and dashed
lines represent ρ1(r) at zero
temperature respectively for the
commensurate (Xv = 0) and
incommensurate crystal
(Xv = 1/180) at the same
density, taken from Ref. [21]

3 Vacancies at Finite Temperature

The presence of vacancies in solid 4He produces at zero temperature the emergence
of supersolidity, even when the vacancy concentration is very small. The influence
of vacancies in solid 4He is reasonably expected to change with temperature, but an
accurate estimation of temperatures at which supersolidity appears was lacking until
recently. Our aim has been to gain a deeper understanding of this behavior by per-
forming comprehensive PIMC simulations. It is worth mentioning that the efficiency
of the sampling in PIMC, when the temperature approaches the zero limit, drops
progressively by the low acceptance ratio of the sampling movements. In order to
overcome, at least in part, these technical issues it is crucial to work with an accurate
action, that allows for reducing the number of terms (beads), and a good permutation
sampling as the one provided by the worm algorithm.

We have studied the properties of incommensurate solid 4He at finite tempera-
ture carrying out PIMC simulations of N = 179 4He atoms, interacting through an
accurate Aziz pair potential [11], in an almost cubic simulation box matching the pe-
riodicity of an hcp lattice made up of Ns = 180 sites at a density ρ = 0.0294 Å−3.
As usual, we apply periodic boundary conditions to the simulation box to emulate the
infinite dimensions of the bulk system.

Thanks to the accuracy of the Chin approximation for the action, it is possible
to reach convergence of the physical observables in the limit ε → 0 with a rather
large value of the imaginary time step ε, making thus feasible the simulation of the
quantum system with a small number of beads, even at low temperature [18]. More
precisely, the convergence of the one-body density matrix ρ1(r) is achieved with a
time step ε = 0.033 K−1.

PIMC results for ρ1(r) at different temperatures and at the density quoted above
are shown in Fig. 1. We have plotted, in the same figure, the zero-temperature esti-
mation of ρ1 for the same system and for a perfect hcp crystal, obtained with the Path
Integral Ground State method [21]. We notice that the highest temperature at which
the system presents a non-zero condensate fraction n0, indicated by a plateau in the
large r behavior of ρ1(r), is T0 = 0.2 K. Our estimation for n0 at this temperature is
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Fig. 2 Two-dimensional projection of basal planes of the incommensurate hcp crystal at different temper-
atures, represented according to the PIMC isomorphism of the classical polymers. At T = 1 K (high-left
panel) the vacancy is localized and indicated by the circle. At T = 0.5 K (high-right panel), the vacancy
begins to delocalize: the ellipse indicates a quantum particle delocalized over two different lattice sites. At
T = 0.2 K (low-left panel), the vacancy is completely delocalized and cannot be easily detected. Below
T = 0.2 K (low-right panel), the delocalization of vacancy strongly enhance the exchange between the
bosons and allows the appearance of paths presenting a non-zero winding number, like the one represented
by the thick line

n0 = (8.4±0.8)×10−4. At temperatures T > T0, the plateau disappears and the one-
body density matrix presents an exponential decay at large r , which becomes more
pronounced as the temperature increases, up to T = 0.75 K. Above this temperature,
the decay of ρ1(r) becomes independent of T and it is similar to the large r behavior
of ρ1(r) in commensurate (perfect) crystals.

A relevant feature of PIMC is the possibility of giving a qualitative microscopic
description of atomic positions in 4He crystals by means of its ring-polymer represen-
tation; the spreading of beads of each polymer gives an account of the delocalization
of the atoms due to their zero-point motion. In Fig. 2, we show snapshots of the typ-
ical configurations of the incommensurate crystal at different temperature, plotting
two-dimensional projections of the PIMC polymers lying in a basal plane of the hcp
lattice.

At the highest temperature that we have studied, that is T = 1 K, the polymers
do not spread on distances larger than the interatomic distance, indicating that the
4He atoms tend to stay localized around their equilibrium positions. In this case, the
vacancies are easily detectable inside the lattice. This behavior explains the fact that,
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at this temperature, the presence of vacancies does not affect noticeably the overall
behavior of ρ1 which, for the incommensurate crystal, is similar to the one of the
perfect crystal.

At lower temperatures, the delocalization of 4He atoms increases, allowing poly-
mers to occupy different lattice points. In typical configurations at T = 0.5 K, we can
detect polymers which spread on distances higher than the interatomic distance. This
eventuality, which indicates that the vacancies begin to delocalize, enhances the pos-
sibility for the different polymers to superpose and thus to permute. However, at this
temperature the polymers spreading on different lattice points are still rare events and
the formation of long permutation cycles, which are necessary for BEC, is inhibited.

If we further decrease the temperature, the polymers spreading on different lattice
points become more frequent and it is impossible to associate a well defined lattice
point to every quantum particle, as in the case at higher temperature. At T = 0.2 K,
the typical configuration of the incommensurate crystal looks like a commensurate
system, indicating that the vacancies at this temperature are completely delocalized
and thus undetectable inside the crystal. The frequent occurrence of a same lattice
point occupied by beads belonging to different polymers strongly enhances the ex-
changes between the 4He atoms and allows also the creation of long permutation
cycles. In particular, for T ≤ 0.2 K, it is possible to sample configurations presenting
a non-zero winding number, as the one shown in the low left panel of Fig. 2. In this
picture, we show two following basal planes of the incommensurate hcp lattice and
we highlight a path which winds around the boundary conditions of the simulation
box. The appearance of non-zero winding number paths in the sampled configurations
is a clear signal that the simulated incommensurate crystal supports superfluidity at
temperatures below T0 = 0.2 K. On the other hand, this onset temperature is observed
to be an increasing function of the vacancy concentration [22].

4 Vacancies and the Elastic Constants

We have carried out a computational study of the elastic properties of perfect (e.g.
free of defects) and incommensurate solid 4He in the hcp structure based on the dif-
fusion Monte Carlo approach. This zero-temperature study is intended to improve
our understanding of the response of solid helium to external strain, and extends the
work initiated by Pessoa et al. [23]. In particular, we provide the zero-temperature
dependence of C44 on pressure up to ∼110 bar. This is a significantly higher pres-
sure than previously considered both experimentally and theoretically. Our results are
compared to experimental data and other calculations when available and, as it will be
shown later on, good agreement is generally found. The computational method that
we employ is fully quantum and virtually exact, that is, in principle only affected by
statistical uncertainties. In this sense, our study also represents an improvement with
respect to previous zero-temperature first-principles work [23] based on variational
Monte Carlo calculations (i.e., subject to bias stemming from the choice of the trial
wavefunction).
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For small strains, the zero-temperature energy of a crystal can be expressed as

E = E0 + 1

2
V0

6∑
i,j=1

Cij sisj , (3)

where V0 and E0 are the volume and internal energy of the undistorted solid, {Cij }
the elastic constants and {si} the strain components defined such that s1, s2 and s3 are
fractional increases in the x, y and z directed axes, and s4, s5 and s6 angular increases
of the xy, xz and yz angles [24, 25]. The symmetry of the crystal under considera-
tion defines the number of elastic constants which are non-zero. In hcp crystals, this
number reduces to five namely C11, C12, C33, C13 and C44, where C44 is commonly
known as the shear modulus. To calculate these elastic constants, is necessary to
compute the second derivative of the internal energy of the crystal with respect to
the strain tensor σij . For this, we express the primitive hcp unit cell in terms of the
translational vectors

a1 = a

(
+1

2
i +

√
3

2
j
)

(4)

a2 = a

(
−1

2
i +

√
3

2
j
)

(5)

a3 = ck, (6)

where a and c are the lattice parameters in the basal plane and along the z axis
respectively, and i, j and k correspond to the usual unitary Cartesian vectors, and
two-atom basis set r1 = 1

2 a1 + 1
3 a2 + 2

3 a3 and r2 = (0,0,0).
In particular, the shear modulus C44 quantifies the response of the hcp crystal to a

heterogeneous strain in which the angle between by the c-axis and basal plane is tilted
and the volume of the unit cell kept fixed. Such a shear deformation can be expressed
as a transformation between sets of primitive translational vectors, {a1,a2,a3} →
{e1, e2, e3}, where [25]

e1 = a

(
+1

2
i +

√
3

2
j + ε

2
k
)

e2 = a

(
−1

2
i +

√
3

2
j − ε

2
k
)

e3 = ck, (7)

ε being a dimensionless parameter. It follows that

C44 = 1

V0

(
∂2E

∂ε2

)
V =V0

, (8)

where the equilibrium condition is fulfilled at ε = 0.
The simulation box used in our perfect (defected) pure shear calculations contains

200 (199) 4He atoms and was generated by replicating the hcp unit cell 5 times
along e1 and e2, and 4 times along e3. In proceeding so, hexagonal symmetry in our
supercell calculations is guaranteed by construction. Periodic boundary conditions
were imposed along the three directions defined by the edges of the non-orthorhombic
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Fig. 3 Pressure-dependence of
the calculated shear modulus of
perfect and defected solid 4He
at zero temperature.
Experimental data are taken
from Refs. [26] (Crepeau et al.),
[27, 28] (Greywall), and [29]
(Syshchenko et al.) Linear fits to
our results are also shown

Table 1 Elastic constants of the perfect (commensurate) and defected (incommensurate) hcp solid 4He
calculated with the DMC method at P = 26 bar. Experimental values obtained by Crepeau et al. [26] at a
pressure P = 25.33 bar. Numbers within parenthesis stand for errors

C11 C12 C13 C33 C44

Commensurate 560(6) 210(3) 130(2) 639(7) 140(2)

Incommensurate 574(6) 227(3) 152(2) 649(2) 138(2)

Expt. 405(4) 213(4) 105(13) 554(22) 124(2)

simulation box. Prior to our shear modulus calculations, we determined the value of
the equilibrium c/a ratio at each volume. We found that regardless of the pressure
considered the optimal c/a value was always 1.62(1). In order to express our C44 (V )

results as a function of pressure we employed the equations of state P(V ) reported
in Ref. [13] (in both perfect and defected cases), which were deduced employing the
DMC method and considering accurate finite-size corrections to the total energy [30].
Additional details of our elastic constant calculations can be found in Ref. [15].

In Fig. 3, we plot the pressure dependence of the shear modulus of perfect and
defected solid 4He as obtained in our T = 0 calculations. We found that these results
can be accurately reproduced with a linear function of the form C44(P ) = a44 +b44P .
In the perfect crystal, parameters a44 and b44 adopt the values 92.2 (1.7) bar and
1.83 (0.04) respectively, whereas in the defected structure these are 93.3 (1.7) bar
and 1.72 (0.04). It is observed that the elastic properties of perfect and defected
helium are very similar at pressures close to melting (that is ∼ 25 bar). Also we
note that both sets of C44 data are compatible with experiments performed at low
pressures and temperatures [26–29]. A similar agreement is achieved with the other
elastic constants that we report at a pressure close to melting in Table 1. At this
particular pressure, all the constants of the defected crystal except C44 are larger
than the ones of the perfect solid, with differences of variable size depending on
the particular Cij . As compression is increased, the shear modulus of the defected
crystal becomes appreciably smaller than that of perfect 4He. In relation to recent
shear modulus experiments [29] we must conclude that, based on this preliminary



160 J Low Temp Phys (2012) 168:150–161

computational study, the increase of C44 observed at low-T can not be explained in
terms of point defects.

5 Summary and Conclusions

In the present work, we have reported recent results on the microscopic properties
of hcp 4He with a tiny fraction of point defects, i.e., vacancies. To make our study
as free of approximations as possible we have used state-of-the-art quantum Monte
Carlo methods, both at zero and finite temperature. Relying only on the Hamiltonian,
we have studied two particular aspects that we think relevant in the present discus-
sion about the possible supersolid 4He phase. First, we have addressed the question
of the behavior of vacancies when the temperature decreases, approaching the tem-
peratures where NCRI is observed. Our PIMC results unambiguously show that there
is an onset temperature for Bose-Einstein condensation that depends on the vacancy
concentration. For the lowest concentrations that we can access with our approach
this onset temperature is close to the experimental one. At this same temperature, the
vacancies are observed to change their spatial behavior. Our simulations show that
for T larger than the onset temperature, vacancies appear as classical entities in the
sense that we can always identify where they are, as it happens in a classical crystal.
For temperatures smaller than the onset one, the vacancy is completely delocalized
and the polymers representing the particles in the PIMC formalism spread over all
the sites as if the crystal were perfect.

In a second part, we have studied the elastic behavior of solid 4He in the limit
of zero temperature. Technically, this is achieved by calculating energies of the de-
formed crystal by means of the DMC method. This approach is quite standard in
classical simulations but much less worked out in quantum Monte Carlo. We have
reported results for all the elastic constants at melting and the pressure dependence of
C44. The presence of vacancies is also studied. Our preliminary results show a glob-
ally small effect with the more relevant result being the different slope of the elastic
constants with the pressure: the slope for the incommensurate crystal is systemati-
cally smaller than the one for the commensurate phase.

The role of vacancies in a supersolid scenario for solid 4He has been frequently
excluded due to two arguments: the relatively high energy cost of its formation (above
10 K) and the possibility that vacancies form aggregates and eventually evaporate. It
is certainly difficult that vacancies appear at very low temperature by thermal activa-
tion but we think that we cannot exclude the appearance of point defects along the
growing process. Concerning the possible aggregation of vacancies due to a short-
range attraction between them, there are different theoretical predictions with contra-
dictory observations. We are currently exploring this issue as a function of tempera-
ture.
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