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1 Field-dependent experimental setup for calorimetry and
dielectric spectroscopy
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Fig. S1 Schematics of the experimental setups to perform (a) dielectric spectroscopy and (b) calorimetry under applied
electric field and hydrostatic pressure.
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2 Density Functional Theory results

Fig. S2 Theoretical first-principles characterization of PST in the paraelectric cubic phase (space group Fm3̄m). (a) Sketch
of the 40-atoms unit cell employed in the DFT simulations. (b) Computed phonon spectrum; imaginary phonon frequencies
are represented with negative values. (c) Sketch of the atomic displacements (blue arrows) associated with the lowest-
energy antiferrodistortive (i.e., oxygen octahedral rotations) vibrational instability estimated at Γ. (d) Sketch of the atomic
displacements (blue arrows) associated with the lowest-energy polar vibrational instability estimated at Γ.
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3 Structural and microstructural analysis

The ceramic pellets were crushed, and X-ray diffraction (XRD) data were acquired with the PANalytical
X’Pert PRO (Malvern Panalytical, Malvern, UK) using Cu-Kα1 radiation. The XRD pattern was mea-
sured in the 2θ range from 10° to 70° with a step of 0.034° and a dwell time of 100 s per step and is shown
in Fig. S3(a). The (111) and (200) peaks from the XRD pattern were used to determine the degree of
ordering Ω by Eq. 4 from Ref. [1]:

Ω2 =

(
I111
I200

)
exp(

I111
I200

)
(theor,Ω=1)

(1)

The Ω was calculated to be 0.87, as described in the Results section of the article. For the theoretical
ratio of peak intensities I111/I200, the value 1.33 was taken as suggested in Ref. [2].

The microstructure of the sintered ceramics was investigated using a field-emission scanning electron
microscope (FE-SEM, JSM-7600 F, Jeol Ltd., Japan). Prior to microstructural analysis, the samples were
fractured for fracture-surface examination, ground and polished with diamond paste and fine polished
using OP-S colloidal silica suspension (Struers, Denmark) for polished-surface examination, and thermally
etched at ∼ 950°C for etched-surface examination and grain size evaluation. The FE-SEM micrographs
are shown in Fig. S3(b). The average grain size of (1.2±0.7) µm was evaluated from the digitized images
of the etched surfaces processed by Image Tool software (UTHSCSA Image Tool Version 3.00. 2002) by
measuring more than 450 grains. The grain size is expressed as the Feret’s diameter [3].

Fig. S3 (a) X-ray spectra of crushed PST ceramics. The inset shows the region measured in the 2θ range from 17° to 24°.
(b) FE-SEM micrographs of the crushed (top left and right), polished (bottom left) and thermally etched (bottom right)
surface of the PST ceramic.
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4 Calorimetry at atmospheric pressure
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Fig. S4 Differential Scanning Calorimetry at atmospheric pressure for different scanning rates. (a) Thermograms. (b)
Maximum (solid symbols) and onset (empty symbols) of the transition peak. (c) Transition enthalpy change obtained by
integration of the DSC signals. In (b) and (c) red and blue symbols stand for heating and cooling runs, respectively.
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5 Differential Thermal Analysis (DTA) under pressure and
electric field

Fig. S5 Full set of measured DTA thermograms after baseline subtraction as a function of temperature for different values
of applied pressure and electric field.
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(a) (b)

Fig. S6 Transition entropy change as a function of pressure and electric field, on heating (a) and on cooling (b) obtained
by a smooth fitting of the values calculated via integration of DTA peaks after baseline subtraction.
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Fig. S7 (a) Transition temperature as a function of pressure for different applied electric fields and (b) transition temper-
ature as a function of electric field for different applied pressure, as determined from DTA (solid symbols) and Dielectric
Spectroscopy (DS, empty symbols). Discrepancies between the two sets of data are due to the imprecise determination of
the transition temperature from the DS peaks.
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6 Determination of the temperature-, pressure- and electric
field-dependent entropy

The temperature-, pressure- and electric field-dependent entropy S(T, p, E) of a system undergoing a
first-order phase transition can be expressed with respect to a reference entropy S(T0, patm, 0) as

S(T, p, E) = S(T0, patm, 0) +

∫ T

0

1

T ′

(
Cp +

dQ

dT ′

)
dT ′ −

∫ p

patm

(
∂V

∂T

)
p′,E

dp′ +

∫ E

0

(
∂P

ρ∂T

)
p,E′

dE′ (2)

Here dQ
dT is the measured p- and E-dependent heat flow after baseline subtraction accounting for the

entropy change at the transition and Cp is the heat capacity at constant fields p and E. The last two
terms at the right side of the last equation are derived from Maxwell relations and represent isothermal
entropy changes in individual phases outside the transition driven by pressure, ∆S+(patm → p), and
electric field, ∆S+(0 → E) (where ρ is density). Calculation details are given in the following sections.

6.1 Construction of the temperature-, pressure- and electric field-dependent
heat capacity

Heat capacity Cp at constant p and E was constructed as Cp = xCI
p + (1− x)CII

p . Here x(T, p, E) is the
system fraction in the high-temperature phase determined from cumulative integration from DTA peaks
using the following expression:

x(T, p, E) =

∫ T

T1(p,E)
dQ(T,p,E)

T ′dT ′ dT ′∫ T2(p,E)

T1(p,E)
dQ(T,p,E)

TdT dT
(3)

where T1(p,E) and T2(p,E) are temperatures conveniently chosen before and after the transition for
integration of DTA peaks after baseline subtraction. In turn, CI

p and CII
p are the heat capacities of the

paraelectric and ferroelectric phases at atmospheric pressure and without any applied electric field, and
are taken from literature [4]. Moreover, CI

p and CII
p were assumed to be independent of p and E within

the field ranges under study. Their values were extrapolated to the temperature interval required by the
field-driven transition shift as given by DTA measurements. The constructed temperature-, pressure- and
electric field-dependent heat capacity functions Cp used in Eq. 2 for the determination of the entropy
functions are shown in Fig. S8.

6.2 Additional effects in individual phases

In this section we analyze isothermal entropy changes in individual phases outside the transition driven
by pressure, ∆S+(patm → p), and electric field, ∆S+(0 → E). According to literature data [5–7], both
phases show small thermal expansion. Assuming this term to be independent of pressure, we estimate
∆S+(patm → p) ≤ 0.5 J K−1 kg−1 upon pressure changes of ∼ 200 MPa. Therefore, we neglect this
term in the low-temperature phase, which is consistent within uncertainty with very small values for
∆S+(patm → p) obtained in the high-temperature phase.

As for ∆S+(0 → E), we also assume
(

∂P
ρ∂T

)
E

to be independent of the electric field, which

should result in an upper threshold for this contribution. Using literature data [1], we estimate
∆S+(0 → E) ∼ 0.15 J K−1 kg−1 for the low-temperature phase and ∆S+(0 → E) ∼ 0 for the high-
temperature phase upon electric field changes of ∆E ∼ 6 kV cm−1. Therefore, this term is also neglected
in the construction of the entropy functions.

Considering the uncertainties associated with the aforementioned approximations and those arising
due to the background to noise ratio in field-dependent calorimetry, we estimate an uncertainty of about
20% in the maximum values obtained for the caloric effects under maximum field changes.
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7 Thermodynamics of multicaloric effects in a pV − EP − T
system

The thermodynamics of multicaloric effects that are relevant to ferroelectric compounds involves the
generalized coordinates volume V and polarization P , and the corresponding conjugate fields pressure p
and electric field E. Given the state function entropy S(T, p, E) (T is temperature), isothermal entropy
changes ∆S occurring due to changes in p (p0 → p1) and E (E0 → E1) can be expressed as a sequence of
two monocaloric processes, i.e. each associated with the change in only one field. For instance, considering
a sequence of changing first p and then E:

∆S(T, p0 → p1, E0 → E1) = ∆S(T, p0 → p1, E0) + ∆S(T, p1, E0 → E1) (4)

where ∆S(T, p0 → p1, E0) is the BC effect taking place at constant E0 and ∆S(T, p1, E0 → E1) is the
EC effect taking place at constant p1. It is straightforward to see that this last term can be decomposed
in the following sequence of paths:

∆S(T, p1, E0 → E1) = ∆S(T, p1 → p0, E0) + ∆S(T, p0, E0 → E1) + ∆S(T, p0 → p1, E1) (5)

Inserting Eq. 5 in Eq. 4 we obtain:

∆S(T, p0 → p1, E0 → E1) = ∆S(T, p0 → p1, E0) (6)

+∆S(T, p0, E0 → E1) + ∆S(T, p0 → p1, E1) + ∆S(T, p1 → p0, E0) (7)

= ∆S(T, p0 → p1, E0) + ∆S(T, p0, E0 → E1) + ∆Scc (8)

where in Eq. 8 we have identified the cross-coupling contribution ∆Scc as the difference between the
multicaloric effects obtained when changing both p and E and the summation of the monocaloric effects
when changing only p0 → p1 (at E0) and only E0 → E1 at (at p0). Using the integral form ∆S(T, p0 →
p1) =

∫ p1

p0

(
∂S
∂p

)
T
dp from the exact differential property for S at constant T , we can express:

∆Scc = ∆S(T, p0 → p1, E1) + ∆S(T, p1 → p0, E0) (9)

=

∫ p1

p0

(
∂S

∂p

)
T,E1

dp−
∫ p1

p0

(
∂S

∂p

)
T,E0

dp (10)

=

∫ p1

p0

∂

∂p
[S(T, p, E1)− S(T, p, E0)]T dp (11)

=

∫ p1

p0

∂

∂p
[∆S(T, p, E0 → E1)]T dp (12)

=

∫ p1

p0

∂

∂p

[∫ E1

E0

(
∂P

ρ∂T

)
p,E

dE

]
T

dp (13)

=

∫ p1

p0

∫ E1

E0

∂

∂T

(
∂P

ρ∂p

)
T,E

dpdE (14)

=

∫ p1

p0

∫ E1

E0

∂χ12(T, p, E)

∂T
dpdE (15)

where in Eq. 13 the Maxwell relation ∆S(T, p0, E0 → E1) =
∫ E1

E0

(
∂P
ρ∂T

)
p,E

dE has been used and in eq.

15 we have introduced the off-diagonal component of the cross-susceptibility tensor χ12 ≡
(

∂P
ρ∂p

)
T,E

. By

exchanging E and p and using the Maxwell relation ∆S(T, p0 → p1, E0) = −
∫ p1

p0

(
∂V
∂T

)
p,E0

dp, we then

obtain that the cross-susceptibility tensor is symmetric, χ12 = χ21 ≡ χ:

χ ≡
(
∂P

ρ∂p

)
T,E

= −
(
∂V

∂E

)
T,p

(16)
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These equations show that for materials with strong cross-response between generalized coordinates
and non-conjugated fields, the multicaloric effects may be enhanced with respect to the monocaloric
counterparts.
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