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Due to critical environmental and technological issues, there is a pressing need to switch from
current refrigeration methods based on compression of greenhouse gases to novel solid-state cooling
technologies. Solid-state cooling capitalizes on the thermal response of materials to external fields
named “caloric effect”. The electrocaloric (EC) effect driven by electric fields is particularly promis-
ing from a technological perspective owing to its downsize scalability and natural implementation
in circuitry. Simulation of EC effects represents an efficient and physically insightful strategy for
advancing solid-state cooling by complementing, and in some cases guiding, experiments. Simula-
tion of EC effects involves approaches ranging from computationally inexpensive phenomenological
models to computationally very demanding, but quantitatively accurate, first-principles methods.
Here, first-principles based EC simulation approaches like ab initio quasi-harmonic methods, inter-
atomic potentials and effective Hamiltonians are reviewed. The Chapter finalizes with a collection
of case studies in which such methods were employed to simulate original EC effects.

I. INTRODUCTION

Polar materials exhibit a net electric dipole, also called
polarization, that can be modified by temperature or an
electric field. From a crystallographic point of view, po-
lar materials are characterized by non-centrosymmetric
atomic structures that lack inversion symmetry. Oxide
perovskites like BaTiO3 and PbTiO3 are archetypal polar
materials in which their electric polarization is strongly
coupled with their structural degrees of freedom [1].
Magnetism may coexist with polar order in some of these
compounds, the so-called multiferroics (e.g., BiFeO3 and
BiCoO3 [2–4]), which may add further functionality to
this class of materials [5]. Oxide perovskites can be syn-
thesized in a wide variety of forms and sizes, like ce-
ramics, thin films, nanocrystals and nanowires, by using
well-established synthesis methods (e.g., solid-state reac-
tions and chemical vapour and pulsed laser deposition
techniques). Thus, owing to their unique functionality
and morphological versatility, polar materials are found
in a large number of technological applications related to
the fields of information storage, electronic devices, and
energy conversion [6–8].

The isothermal entropy changes associated with fluctu-
ations in the electric, magnetic and structural properties
of polar materials can be large, |∆S| ∼ 100 kJK−1kg−1,
hence they may render sizable caloric effects (i.e., adia-
batic temperature changes of |∆T | ∼ 10 K). Solid-state
cooling is an environmentally friendly, highly energy-
efficient, and highly scalable technology that exploits
caloric effects in materials for refrigeration purposes [9–
15]. By applying external fields on caloric materials it
is possible to achieve reversible temperature shifts that
can be integrated in cooling cycles and do not involve
the use of greenhouse gases. Due to their natural imple-
mentation in circuitry, polar materials are specially well
suited for solid-state cooling applications based on elec-
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trocaloric (EC) effects, which are driven by electric fields
(see, for instance, works [16–20]).
The magnitude of EC effects can be estimated accu-

rately with theoretical and atomistic simulation meth-
ods. Computer simulations can be used to rationalize
the origins of experimentally observed EC phenomena
since the materials and phase transitions of interest can
be accessed at the atomic scale under controlled condi-
tions. Moreover, from a resources point of view computer
simulations are inexpensive. For instance, by using open-
source software and modest computational resources one
can already simulate complex EC effects and assess the
magnitude of the accompanying isothermal entropy and
adiabatic temperature shifts. Thus, modeling of EC ef-
fects can be done systematically in order to complement
and also guide the experiments.
The reliability of computer simulations, however, de-

pends strongly on the simplifications made on the
adopted structural and interaction models. Typically, in-
creasing the reliability of the structural models comes at
the expense of reducing the accuracy in the description of
the interatomic forces (due to practical limitations, see
Fig.1). For instance, if the simulation approach to be
employed is accurate first-principles methods the calcu-
lations are likely to be performed at zero temperature
by considering perfectly ordered atomic structures. Such
simulation conditions obviously differ from the actual ex-
perimental conditions. On the other hand, to simulate
EC effects directly at finite temperatures for realistic sys-
tems containing crystalline defects and/or other inhomo-
geneities one should use classical interatomic potentials
or effective Hamiltonians, which may suffer from trans-
ferability issues and in general have modest predictive
power. Fortunately, there are well-established simulation
approaches that allow to achieve a suitable balance be-
tween computational accuracy and model reliability, and
it is responsibility of the modeler to use them adequately
for obtaining meaningful results.
In this Chapter, we review computational techniques

based on first-principles methods that can be used to
theoretically estimate and predict EC effects. We start
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FIG. 1: Overview of computational approaches based on first-principles methods that can be used to estimate EC
effects. The typical system sizes that can be simulated with them, N , along with some software codes in which they
have been implemented, and the usual modalities of EC simulation that can be done with them are indicated. VASP
[21], PHONOPY [22], GULP [23], LAMMPS [24], FeRam [25], and SCALE-UP [26 and 27] stand for software codes.

by briefly describing genuine first-principles methods, like
density functional theory, and other practical approaches
that rely on them to mimic polar materials, namely,
bond-valence interatomic potentials and effective Hamil-
tonians. Next, the simulation strategies that are em-
ployed to assess EC effects with such methods, either di-
rectly or indirectly, are reviewed. We finalize the Chapter
by providing some representative examples in which first-
principles based methods have been used to discover and
characterize original EC effects for multiferroic thin films
[28], bulk hybrid organic-inorganic perovskites [29], and
relaxor ferroelectrics [30].

II. COMPUTATIONAL METHODS

The foundations of Density Functional Theory (DFT),
a first-principles approach widely used in condensed-
matter and materials science, bond-valence and classi-
cal interatomic potentials and effective Hamiltonians are
briefly reviewed next. The two latter computational ap-
proaches are approximate and rely on the outputs of
accurate first-principles methods (also called ab initio),
typically DFT. The computational cost of DFT methods
is several orders of magnitude higher than those of in-
teratomic potentials and effective Hamiltonians (Fig.1),
hence most of the times first-principles methods cannot
be used straightforwardly to estimate EC effects.

A. Ab initio methods

In solids, the dynamics of the electrons and nuclei can
be decoupled to a good approximation because their re-
spective masses differ by several orders of magnitude.
The wave function of the corresponding many-electron
system, Ψ(r1, r2, ..., rN ), therefore can be determined by
solving the Schrödinger equation corresponding to the
non-relativistic Born-Oppenheimer Hamiltonian:

H = −1

2

∑
i

∇2
i −

∑
I

∑
i

ZI

|RI − ri|

+
1

2

∑
i

∑
j ̸=i

1

|ri − rj |
, (1)

where ZI are the nuclear charges, ri the positions of the
electrons, and RI the positions of the nuclei, which are
considered to be fixed. In real materials, Ψ is a complex
mathematical function that in most cases is unknown.
At the heart of any first-principles method is to find
a good approximation for Ψ, or an equivalent quantity
(e.g., the electronic density), that is manageable enough
to perform calculations. Examples of ab initio methods
include density functional theory (DFT), Møller-Plesset
perturbation theory (MP2), the coupled-cluster method
with single, double and perturbative triple excitations
[CCSD(T)], and quantum Monte Carlo (QMC), to cite
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just a few. Among these techniques, DFT methods are
frequently applied to the study of ferroelectrics and mul-
tiferroics and for this reason we summarise their founda-
tions in what follows.

In 1965, Kohn and Sham developed a pioneering theory
to effectively calculate the energy and properties of many-
electron systems without the need of explicitly knowing
Ψ [31 and 32]. The main idea underlying this theory,
called density functional theory (DFT), is that the ex-
act ground-state energy, E, and electron density, n(r),
can be determined by solving an effective one-electron
Schrödinger equation of the form:

HKSΨiσ = ϵiσΨiσ , (2)

whereHKS is the Kohn-Sham Hamiltonian, index i labels
different one-electron orbitals and σ different spin states.
The KS Hamiltonian can be expressed as:

HKS = −1

2
∇2 + Vext(r) +

∫
n(r′)

|r− r′|
dr′ + Vxc(r) , (3)

where

n(r) =
∑
iσ

|Ψiσ(r)|2 , (4)

Vext represents an external field and Vxc(r) = δExc/δn(r)
is the exchange-correlation potential.

The exchange-correlation energy has a purely quantum
mechanical origin and can be defined as the interaction
energy difference between a quantum many-electron sys-
tem and its classical counterpart. Despite Exc represents
a relatively small fraction of the total energy, this contri-
bution is extremely crucial for all materials and molecules
because it acts directly on the bonding between atoms.
In general, Exc[n] is unknown and needs to be approx-
imated. This is the only source of fundamental error
in DFT methods. In standard DFT approaches, Exc[n]
typically is approximated with the expression:

Eapprox
xc [n] =

∫
ϵapproxxc (r)n(r)dr , (5)

where ϵapproxxc is made to depend on n(r), ∇n(r), and/or
the electronic kinetic energy τ(r) = 1

2

∑
iσ |∇Ψiσ(r)|2 .

Next, we summarise the basic aspects of the most popular
Exc[n] functionals employed for computational analysis
of archetypal ferroelectric and multiferroic materials.

In local approaches (e.g., local density approximation
–LDA–), Eapprox

xc in Eq.(5) is calculated by considering
the exchange-correlation energy of an uniform electron
gas with density n(r), ϵunifxc , which is known exactly from
quantum Monte Carlo calculations [35 and 36]. In order
to deal with the non-uniformity of real electronic sys-
tems, the space is partitioned into infinitesimal volume
elements that are considered to be locally uniform. In
semi-local approaches (e.g., generalized gradient approx-
imation –GGA–), Exc is approximated similarly to lo-

cal approaches but ϵapproxxc is made to depend also on
the gradient of n(r) [37 and 38]. Both local and semi-
local approximations satisfy some exact Exc constraints
and can work notably well for systems in which the elec-
tronic density varies slowly over the space (e.g., crystals).
An extension of the GGA approach is provided by meta-
GGA functionals, in which the non-interacting kinetic
energy density is considered also as an energy functional
input. An example of this latter type of functionals is
the recently proposed meta-GGA SCAN [39 and 40].

Hybrid functionals comprise a combination of non-
local exact Hartree-Fock and local exchange energies, to-
gether with semi-local correlation energies. The propor-
tion in which both non-local and local exchange densi-
ties are mixed generally relies on empirical rules. The
popular B3LYP approximation [41], for instance, takes a
20% of the exact HF exchange energy and the rest from
the GGA and LDA functionals. Other well-known hy-
brid functionals are PBE0 [42] and the range-separated
HSE06 proposed by Scuseria and collaborators [43]. In
contrast to local and semi-local functionals, hybrids de-
scribe to some extent the delocalisation of the exchange-
correlation hole around an electron hence they partially
correct for electronic self-interaction errors (which are
ubiquitous in standard DFT) [44]. This technical feature
is specially useful when dealing with strongly correlated
systems that contain d and f electronic orbitals (e.g.,
transition-metal oxide perovskites) [45–48].

B. Bond-valence and classical interatomic
potentials

Using first-principles methods to describe the inter-
actions between electrons and ions in crystals requires
dedicated computational resources. In some cases, the
interatomic interactions can be approximated satisfacto-
rily by analytical functions known as classical interatomic
potentials or force fields and consequently the simulations
can be accelerated dramatically with respect to ab ini-
tio calculations. Classical interaction models contain a
number of parameters that are adjusted to reproduce ex-
perimental or ab initio data, and their analytical expres-
sions are constructed based on physical knowledge and
intuition. The force matching method proposed by Erco-
lessi and Adams [49] is an example of a classical potential
fitting technique that is widely employed in the fields of
condensed matter physics and materials science [50–53].
Nonetheless, the ways in which classical interatomic po-
tentials are constructed are neither straightforward nor
uniquely defined and the thermodynamic intervals over
which they remain reliable are limited.

A pairwise interaction model that has been employed
to successfully simulate polar materials like BaTiO3,
LiNbO3 and KNbO3 at finite temperatures is the
Coulomb–Buckingham (CB) potential, which adopts the
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simple form [54–57]:

Vαβ(rij) = Aαβe
−

rij
ραβ − Cαβ

r6ij
+

ZαZβ

rij
, (6)

where subscripts α and β represent atomic species in the
system, rij the radial distance between a pair of α and β
atoms labelled i and j respectively, Z ionic charges, and
A, ρ and C are potential parameters. The CB poten-
tial is composed of three different energy contributions.
The exponential term accounts for short-range repul-
sive forces resulting from the interactions between nearby
electrons; the second term represents long-range attrac-
tive interactions arising from dispersive van der Waals
forces; the third term is the usual Coulomb interaction
between point charges. In order to describe atomic polar-
izability effects, “core-shell” modeling can be performed
on top of the CB potential. In standard core-shell ap-
proaches, each atom is decomposed into a charged core,
which interact with others through Vij ’s analogous to the
expression shown in Eq.(6), and a charged shell that is
harmonically bound to the core [55–58].

Polar materials are characterized by a delicate bal-
ance between short-range and long-range forces, which
are respectively originated by complex transition metal
(TM) d and oxygen (O) p electronic orbital hybridiza-
tions and the Coulomb interactions between permanent
electric dipoles and higher-order moments [59]. The
simplicity of the pairwise interaction model enclosed in
Eq.(6) may not be adequate to fully grasp the complex-
ity of the TM–O bonding, which turns out to be critical
to describe ferroelectricity and other relevant functional
properties correctly. Bond-valence (BV) potentials rep-
resent an improvement with respect to the CB model
because they can mimic chemical bonding in oxide per-
ovskites and other complex materials more precisely [60].

A general BV potential for oxide perovskites is [61–64]:

VBV(r, θ) = Vbind(r)+Vcharge(r)+Vrep(r)+Vnl(θ) , (7)

where the first term in the right-hand side represents the
bond-valence potential energy, the second the Coulomb
potential energy, the third the repulsive potential energy,
and the fourth an angle potential energy (e.g., to prevent
unphysically large distortions of the oxygen octahedra in
oxide perovskites). The bond-valence energy term gen-
erally is expressed as:

Vbind(r) =

Ns∑
α=1

Sα

Nα∑
i=1

| Viα(ri)− Vα |γα , (8)

with

Viα(ri) =

Ns∑
β=1

NN∑
j

(
rαβ0

rαβij

)Cαβ

, (9)

where Ns represents the number of atomic species in the
system (e.g., 3 for PbTiO3), Sα are fitting parameters,

Nα the number of α atoms, Vα the desired atomic valence
for ion α, γα fitting parameters typically set to 1, j an
atomic index that runs over nearest-neighbour (NN) ions,

rαβ0 and Cαβ parameters determined by empirical rules,

and rαβij the radial distance between ions i and j.

For the repulsive energy term, Vrep, the following ex-
pression normally is employed:

Vrep(r) = ϵ

Ns∑
α=1

Nα∑
i=1

Ns∑
β=1

Nβ∑
j=1

(
Bαβ

rαβij

)12

, (10)

where ϵ and Bαβ are fitting parameters. Meanwhile, an
harmonic function is used for the angle potential energy
that reads:

Vnl(θ) = k

Noct∑
i=1

(
θ2i,x + θ2i,y + θ2i,z

)
, (11)

where k is a fitting parameter, Noct the number of the
oxygen octahedra, and {θi,γ} the angles between the oxy-
gen octahedral axes and the system reference axes.

Reliable BV potentials have been developed for
archetypal ferroelectric and piezoelectric materials like
BaTiO3, PbTiO3, and PbZr0.2Ti0.8O3 [61–65]. Recently,
the outcomes of molecular dynamics simulations per-
formed with BV potentials have shown that ultrafast
electric-field pulses may induce giant and inverse EC ef-
fects (i.e., ∆T < −10 K) in bulk BaTiO3 and PbTiO3

[66]. Such caloric effects occur in the time scale of few
picoseconds hence they could be exploited in the design
of fast solid-state cooling processes.

C. Effective Hamiltonians

Another first-principles based approach that has
proven very successful in describing ferroelectric oxide
perovskites is the effective Hamiltonian method [67–69].
In this approach, a subset of degrees of freedom that
is relevant to the observed phase transitions is first se-
lected. The parameters defining the effective Hamilto-
nian are then determined by performing accurate zero-
temperature first-principles calculations. Finally, finite-
T simulations are undertaken to assess displacive-like
phase transition governed by the generated effective
Hamiltonian. In the effective Hamiltonian approach, the
energy surface of the polar crystal is approximated by
a low-order Taylor expansion of the energy surface of a
high-symmetry non-polar cubic phase, which is observed
in some archetypal ferroelectrics at high temperatures.

A typical effective Hamiltonian consists of five en-
ergy contributions: a local-mode self-energy, a long-range
dipole-dipole interaction, a short-range interaction be-
tween soft modes, an elastic energy and an interaction
between the local modes and local strain [67]. Analyti-
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cally, this model is expressed as:

Etot = Eself({u}) + Edipol({u}) + Eshort({u}) +
Eelast({ηl}) + Eint({ηl}, {u}) , (12)

where {u} are the amplitude vector of the lowest-energy
transversal optical Γ–phonon modes of the parent cubic
phase, and {ηl} the corresponding six-component local
strain tensor.

The local-mode self-energy term adopts the form:

Eself({u}) =
∑
i

κu2
i + αu4

i +

γ
(
u2
ixu

2
iy + u2

ixu
2
iz + u2

iyu
2
iz

)
, (13)

where ui = |ui| and κ, α and γ are expansion parame-
ters to be determined from first-principles calculations.
For the long-range energy term, only dipole-dipole in-
teractions are considered and the following expression is
employed:

Edipol({u}) = Z2

ϵ∞

∑
i<j

uiuj − 3 (r̂ijui) (r̂ijuj)

r3ij
, (14)

where Z is the Born effective charge associated with the
soft mode, ϵ∞ the optical dielectric constant of the ma-
terial, rij ≡ ri − rj the distance vector between differ-
ent unit cells, and r̂ij ≡ rij/rij . To express the short-
range interactions between neighboring local modes, a
formula that is reminiscent of the spin Heisenberg model
is adopted:

Eshort({u}) = 1

2

∑
i̸=j

∑
αβ

Jij,αβuiαujβ , (15)

which typically applies to first, second and third neigh-
bouring unit cells, and where the coupling matrix Jij,αβ
depends on rij and decays rapidly with increasing dis-
tance. Meanwhile, the elastic energy and elastic-phonon
interaction energy terms are deduced by considering sym-
metry and stress–strain relationships of the parent cubic
phase (e.g., elastic constants). For instance, Eelast({ηl})
is expressed as a sum of homogeneous and inhomogenous
deformations that allow to change the shape and volume
of the simulation cell, while the elastic-phonon interac-
tion energy adopts the form:

Eint({ηl}, {u}) =
1

2

∑
i

∑
lαβ

Blαβ ×

ηl (ri)uα (ri)uβ (ri) , (16)

where Blαβ are strain-phonon coupling constants.

To put some numbers on the determination of the
Etot functional expressed in Eq.(12), a total of 18 ex-
pansion parameters fitted to first-principles data are re-
quired to obtain a minimally reliable effective Hamilto-
nian for BaTiO3 [67]. Depending on the material and

physical phenomena to be simulated, further complexity
can be added to the Etot expression; however, the num-
ber of involved expansion parameters may increase very
rapidly [68 and 69]. A version of the effective Hamil-
tonian approach for oxide perovskite has been already
implemented in the freely available code package FeRam
[25].

Effective Hamiltonians, as any other method, present
some limitations. First, because they focus on certain
degrees of freedom they may not be accurate enough to
capture the full range of behavior of the material un-
der study, especially for configurations beyond the model
training database. Second, an appropriate selection of
the degrees of freedom requires significant insight into the
material, which may retard the development of such mod-
els for new systems. Third, first-order phase transitions
characterised by large symmetry and volume changes
cannot be simulated with effective Hamiltonians (recall
the fundamental approximation of a low-order Taylor en-
ergy expansion for a presumed reference cubic phase).
And fourth, the connectivity between atoms needs to be
fixed hence variations in the atomic environment of the
simulated phases cannot be reproduced (e.g., point de-
fects, topological phase transitions and ionic transport).

Recently, an extension of the effective Hamiltonian
method has been developed, the so-called “second-
principles” approach, which may overcome some of the
technical limitations just mentioned [26, 27, and 70]. In
the second-principles approach, the parameters of the ef-
fective Hamiltonian model are computed in a very fast
and efficient way by recasting the Etot fit to a training
set of first-principles data into a simple matrix diagonal-
ization problem. Specifically, the interactions that are
most relevant to reproduce the first-principles training-
set data are selected automatically from a pool that vir-
tually includes all possible coupling terms. The second-
principles method has been already implemented in the
freely available code package SCALE-UP [26 and 27].

III. INDIRECT ESTIMATION OF THE EC
EFFECT

The isothermal entropy change that a polar material
undergoes under the action of a varying external electric
field can be expressed by means of the Maxwell relations
as [10]:

∆S(T, Ef ) =
∫ Ef

0

(
dP

dT

)
E
dE , (17)

where P represents the electric polarization of the system
and E the applied electric field. Likewise, the correspond-
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ing adiabatic temperature shift can be estimated as:

∆T (T, Ef ) = −
∫ Ef

0

T

CE(T )
dS

≈ − T

C0(T )
∆S(T, Ef ) , (18)

where CE(T ) ≡
(
dU
dT

)
E is the heat capacity of the sys-

tem at fixed electric field E and U the internal energy.
Typically, ∆S and ∆T are large in the vicinity of a E–
induced phase transition because under such conditions
the T–induced variation of P is most significant.

Equations (17) and (18) show that the isothermal en-
tropy and adiabatic temperature shifts associated with
the electrocaloric (EC) effect can be estimated indirectly
by knowing the heat capacity of the system and the py-
roelectric coefficient, αE ≡

(
dP
dT

)
E . As we explain next,

indirect estimation of EC effects can be achieved theoret-
ically by using (i) classical interaction potentials and ef-
fective Hamiltonian models in classical molecular dynam-
ics and Monte Carlo simulations, and (ii) first-principles
methods in combination with quasi-harmonic approaches
(Sec.II and Fig.1). It is worth noting that indirect esti-
mation of EC effects is only meaningful in the context of
second-order phase transitions since otherwise the pyro-
electric coefficient αE is ill defined at the transition point,
and consequently Eq.(17) cannot be estimated numeri-
cally (see next section for the estimation of EC effects
associated with first-order phase transitions).

In both molecular dynamics (MD) and Monte Carlo
(MC) simulations it is possible to simulate the system of
interest at the desired T , E and pressure (or volume) con-
ditions. MD simulations are deterministic and rely on the
numerical discretization and integration of Newton’s sec-
ond law of motion [71]. MC simulations, by contrast, are
stochastic and rely on efficient sampling of the Maxwell-
Boltzmann probability distribution [72]. Nevertheless,
when the technical parameters in MD and MC simula-
tions are selected to ensure proper convergence the aver-
age results obtained in both types of simulations should
be equivalent. Typically, large system sizes (N ∼ 103–
107) and long simulation times (τ ∼ 1–10 ns) are required
to obtain well converged results in MD and MC simula-
tions. As a consequence, first-principles methods nor-
mally are excluded from such type of finite-T approaches
and bond valence/classical interaction potentials and ef-
fective Hamiltonians stand out as the ab initio based al-
ternatives for modeling of the interatomic interactions
[29, 30, 73, and 74].

The heat capacity and pyroelectric coefficient of a po-
lar crystal can be estimated efficiently with both MD
and MC methods by computing average internal ener-
gies and atomic positions (or local modes) in simulations
performed at different temperatures. Alternatively, ∆S
can be estimated in a quasi-direct fashion by integrating

the specific heat obtained at constant electric field like:

∆S(T, Ef ) =
∫ T

T0

C0(T
′)− CEf

(T ′)

T ′ dT ′ , (19)

where T0 needs to be sufficiently low in practice so that
the condition S(T0, 0) ≈ S(T0, Ef ) is fulfilled [73]. In the
context of effective Hamiltonians, the following expres-
sion also can be used to estimate adiabatic temperature
shifts produced by electric fields [30]:

∆T (T, Ef ) = −γT

∫ Ef

0

⟨u · U⟩ − ⟨u⟩ · ⟨U⟩
⟨U2⟩ − ⟨U⟩2

dE , (20)

where γT ≡ Za0NT , Z is the Born effective charge asso-
ciated with the soft mode, a0 the lattice parameter of the
cubic unit cell, N the number of sites in the supercell, u
the module of the average supercell local mode, U the
total energy, and ⟨· · · ⟩ denotes thermal average.
Despite the high computational cost associated with

first-principles methods, it is also possible to indirectly
estimate EC effects with them by means of the quasi-
harmonic approximation (QHA). In the quasi-harmonic
approach, the internal energy of a crystal is expressed as
[75–77]:

Eharm(T ) = E0 +
1

2

∑
mn

Ξmnum(T )un(T ) , (21)

where E0 corresponds to the static energy, Ξmn the force-
constant matrix and {u} atomic displacements that de-
pend on T . The phonon frequencies of the crystal, {ωqs},
and corresponding normal mode amplitudes, {Qqs}, are
calculated from the diagonalization of the dynamical ma-
trix obtained from Ξmn.
According to well-established theories [78], the pyro-

electric coefficient of a crystal subject to constant stress,
σ, can be decomposed into two contributions: the pri-
mary contribution obtained at constant strain, αE(η), and
the secondary contribution associated with the material
thermal expansion, αE(T ). These two parts can be ex-
pressed analytically as [79 and 80]:

αE = αE(η) + αE(T ) =

(
∂P

∂T

)
η

+

∑
i

(
∂P

∂ηi

)
T

(
dηi
dT

)
σ

. (22)

The secondary contribution to αE corresponds to the py-
roelectricity induced by the thermal expansion, which
can be obtained from the material piezoelectric stress
constants and volume expansion coefficients computed
with first-principles methods. The primary contribution
to αE corresponds to the “clamped-lattice” pyroelectric-
ity, which results from holding the lattice parameters of
the crystal fixed.
The electric polarization can be expanded in terms of

the vibrational normal mode amplitudes, {Qqs}, accord-
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ing to the formula [79–81]:

P (T ) = P (0) +
∑
qs

∂P

∂Qqs
⟨Qqs⟩ , (23)

where the first term represents the electric polarization in
the absence of thermal fluctuations, which can be read-
ily calculated with first-principles methods [82]. The
primary contribution to the pyroelectric coefficient in
Eq.(22) then can be expressed as [79–81]:

αE(η) =
∑
s

∂P

∂QΓs

d⟨QΓs⟩
dT

+
∑
qs

∂2P

∂Q2
qs

d⟨Q2
qs⟩

dT
, (24)

where only polar Γ-optical phonons survive in the first
term. By using the QHA and first-principles simulations,
one can estimate the temperature derivatives in Eq.(24)
via the expressions [79 and 80]:

⟨QΓs⟩ =
∑
ql

ℏ
2

(2nql + 1)

ω2
Γs

∂ωql

∂QΓs
(25)

⟨Q2
qs⟩ =

ℏ
2

(2nqs + 1)

ωqs
, (26)

where n is the Bose–Einstein distribution function, which
explicitly depends on the temperature [75]. The pyro-
electric properties of several semiconductor (e.g., GaN
and ZnO [30]) and two-dimensional materials (e.g., GeS
and MoSSe [74]) have been estimated successfully with
the explained combination of ab initio methods and the
quasi-harmonic approach.

Likewise, the heat capacity of a crystal can be esti-
mated within the quasi-harmonic approximation by using
the formula [9]:

C0(T ) =
1

Nq

∑
qs

(ℏωqs)
2

kBT 2

e
ℏωqs
kBT(

e
ℏωqs
kBT − 1

)2 , (27)

where Nq is the total number of wave vectors used for
integration in the first Brillouin zone and the summa-
tion runs over all wave vectors q and phonon branches s.
Thus, by using Eqs.(22)–(27), that is, by determining αE
and C0 and their dependence on temperature, in prin-
ciple it is possible to indirectly estimate EC effects with
first-principles methods and without the need to perform
finite-T MD or MC simulations.

IV. CLAUSIUS-CLAPEYRON METHOD

In the case that the E–field induced phase transition of
interest presents a marked first-order character, the cor-
responding isothermal entropy change can be estimated

with the Clausius-Clapeyron method as [10]:

∆S(T ) = −∆P (T )
dEc
dT

, (28)

where ∆P (T ) is the change in polarization along the elec-
tric field direction, and Ec(T ) the critical electric field
inducing the phase transformation.

In the presence of an electric field and by assuming
zero-pressure conditions, the thermodynamic potential
that appropriately describes the stability of a particular
phase is the Gibbs free energy defined as G = F − E ·P ,
where F represents the Helmholtz free energy (where
F ≡ U − TS and U is the internal energy). Accord-
ingly, the thermodynamic condition that determines the
E–induced phase transition between states A and B is
GA(T, Ec) = GB(T, Ec). The approximate value of the
corresponding critical electric field then can be estimated
as:

Ec(T ) ≈
∆F (T )

∆P (T )
, (29)

where ∆F represents the Helmholtz free energy differ-
ence between the two states and ∆P their electric polar-
ization difference along the electric field direction. Thus,
by knowing ∆F (T ) and ∆P (T ) one can estimate Ec, ∆S
and, if the heat capacity of the system is also known, ∆T
as a function of temperature.

The Helmholtz free energy of the competing poly-
morphs in some cases can be estimated accurately as
a function of temperature with first-principles methods
and the quasi-harmonic approximation (QHA) [75–77].
In particular, the Helmoltz free energy associated with
the lattice vibrations, Fvib, is calculated by finding the
phonon frequencies of the crystal, {ωqs}, and subse-
quently using the formula:

Fvib(T ) =
1

Nq
kBT

∑
qs

ln

[
2 sinh

(
ℏωqs

2kBT

)]
, (30)

where Nq is the total number of wave vectors used for
integration in the first Brillouin zone, and the summation
runs over all wave vectors q and phonon branches s. The
total Helmholtz free energy of the system finally can be
estimated as:

Fharm(T ) = E0 + Fvib(T ) , (31)

where E0 is the static energy calculated with the atoms
frozen on their equilibrium lattice positions.

Since the electric polarization difference between poly-
morphs A and B and their heat capacities also can be
estimated as a function of temperature within the quasi-
harmonic approximation (Sec.III), the adiabatic temper-
ature and isothermal entropy changes in Eqs.(18) and
(28) in principle can be determined with first-principles
methods. In fact, the described QHA method has been
employed recently to predict large EC effects in multi-
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ferroic BiCoO3 thin films caused by abrupt first-order
phase transitions [28] (this illustrative case will explained
in detail in Sec.VIA). Nonethess, anharmonic effects,
which mostly are not accounted for by quasi-harmonic
approaches, can be very important in ferroelectric mate-
rials (e.g., BaTiO3) and consequently the QHA may not
be adequate to describe them correctly (for instance, if
imaginary phonon frequencies appear in the vibrational
phonon spectra, Eq.(30) cannot be used [75]). In such
a case, one may alternatively employ genuine ab ini-
tio methods to compute anharmonic free energies for
the relevant polymorphs with methods like thermody-
namic integration from reference models [83–85] and self-
consistent phonon approaches [86–88]. The computa-
tional load associated with these latter ab initio anhar-
monic methods, however, is huge and to the best of our
knowledge they have not been used for the simulation of
EC effects thus far.

V. DIRECT ESTIMATION OF THE EC EFFECT

MD and MC simulations allow to estimate EC effects
directly, that is, by avoiding the use of the Maxwell re-
lations. This modality of EC simulation may be bene-
ficial for cases in which (i) the definition of the electric
polarization poses some ambiguity (e.g., disordered crys-
tals [20]), and/or (ii) the polar degrees of freedom are
strongly coupled with the lattice strain (e.g., good piezo-
electric materials) since in this case Eq.(17) neglects pos-
sible secondary EC effects arising from E-induced struc-
tural distortions [18]. On the other hand, this type
of simulations only can be feasibly performed by using
classical interatomic/bond valence potentials or effective
Hamiltonians because they involve explicit simulation of
T ̸= 0 conditions and exclusively apply to EC effects
deriving from second-order phase transitions (otherwise,
large hysteretic effects may appear that preclude accu-
rate estimations –see below–).

Direct estimation of EC effects have been performed
for a number of different systems including hybrid
organic-inorganic perovskites [29] and multifunctional
oxides [30, 66, 73, and 74]. In this type of simulations, the
electric field needs to be applied/removed very slowly so
that the electrical polarization can follow adiabatically
the external field. On the contrary, the simulated EC
process is irreversible to some extent and the resulting
adiabatic temperature shifts are not meaningful (Fig.2).

Initially, the system is thermalized at the temperature
of interest, Ti, and zero electric field in the canonical,
(N,V, T ), or the isobaric-isothermal, (N, p, T ), ensemble
(where p represents the hydrostatic pressure). After ther-
malization, the simulation is switched to the microcanon-
ical or the isoenthalpic-isobaric ensemble [(N,E, V ) or
(N,H, p) where E and H represent the internal energy
and enthalpy, respectively]. At this stage the electric field
is ramped up to the desired value slowly enough to guar-
antee adiabaticity, and the accompanying temperature

FIG. 2: (a) Sketch of the simulation E-ramping protocol
employed for direct estimation of EC effects. Total
energy of the system as a function of MD steps for

(b) instantaneous field switching on/switching off and
(c) slow field ramping, respectively. The process

simulated in (b) is irreversible and in (c) practically
reversible. Modified from, [73] M. Marathe, A.
Grünebohm, T. Nishimatsu, P. Entel, C. Ederer,

First-principles-based calculation of the electrocaloric
effect in BaTiO3: A comparison of direct and indirect

methods, Phys. Rev. B 93 (2016) 054110.

change, ∆Ton, is monitored. The system is simulated
under these conditions for some time. Subsequently, the
electric field is ramped down to zero slowly enough again
to guarantee adiabaticity and the corresponding temper-
ature change, ∆Toff , and final temperature, Tf , are mon-
itored. Under the condition that the system remains in
thermal equilibrium during the entire described simula-
tion cycle, it will follow that Ti = Tf and ∆Ton = ∆Toff

within the corresponding statistical uncertainties (Fig.2c
and [73]). In such a case, either ∆Ton or ∆Toff can be
identified with the adiabatic temperature change associ-
ated with the simulated EC process.
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FIG. 3: Structural, ferroelectric, and magnetic properties of energetically competitive bulk BCO polymorphs.
(a) Tetragonal P4mm (T ), (b) orthorhombic Pnma (O), and (c) monoclinic Pc (M). (d) Sketch of the spin

configurations and exchange constants considered for the T –AFM(C) and O–AFM(G) Heisenberg spin models.
Electrical polarizations P are referred to pseudocubic Cartesian axis, and oxygen-octahedra rotation patterns θ are
expressed in Glazer’s notation. From, [28] C. Cazorla, J. Íñiguez, Giant direct and inverse electrocaloric effects in

multiferroic thin films, Phys. Rev. B 98 (2018) 174105.

VI. REPRESENTATIVE EXAMPLES

In this section, we analyze three illustrative cases
in which original EC effects have been simulated and
quantified with first-principles based methods. The sys-
tems for which those EC effects have been predicted
are technologically relevant, namely, multiferroic BiCoO3

thin films (case 1: ab initio methods in combination
with the quasi-harmonic approximation), the organic-
inorganic halide perovskite CH3NH3PbI3 (case 2: classi-
cal force fields and molecular dynamics simulations) and
the relaxor ferroelectric BaZr1−xTixO3 (case 3: effective
Hamiltonians and molecular dynamics and Monte Carlo
simulations). Analogous EC simulation success can be
achieved for other families of similar polar materials.

A. Multiferroic BiCoO3 thin films

In multiferroic materials several order parameters co-
exist, typically ferroelectricity and magnetism, and are
coupled to each other. Such unique properties convert
multiferroics into promising materials for applications
in memory devices, sensors and solid state cooling [9],
to cite few examples. The archetypal multiferroic com-
pound is the oxide perovskite BiFeO3, which presents

a rhombohedral ground-state phase characterised by an
electric polarisation of ∼ 60 µC/cm2 and antiferromag-
netic (AFM) spin ordering of G-type [2] (Fig.3).

Bulk BiCoO3 (BCO) is another multiferroic material
in which ferroelectricity and antiferromagnetism coexist
at ambient conditions. The stable phase of BCO is fer-
roelectric (FE) and tetragonal T , with a significantly
large out-of-plane versus in-plane lattice constant ratio
of ≈ 1.3 (Fig.3) [3 and 28]. The competing structures
in BCO are the paraelectric (PE) orthorhombic O phase
and the FE monoclinic M phase [3]. Both competitive
phases have cells that are slightly distorted versions of
the ideal cubic perovskite structure, with c/a ≈ 1. The
mentioned FE phases present spontaneous polarizations
along quite different crystallographic directions, namely,
pseudocubic [001]pc for T and ∼ [111]pc for M (Fig.3).
As regards magnetism, both the O and M phases display
G-type AFM order (Fig.3) with a quite high Néel tem-
perature of TN ∼ 500 K. The T phase, on the contrary,
presents C-type AFM order (Fig.3) with a relatively low
TN ∼ 310 K [3 and 28].

The competition between BCO polymorphs is strongly
affected by epitaxial strain, which is realized in prac-
tice by growing epitaxially thin films on perovskite sub-
strates, as this imposes an in-plane lattice constant ain in
the system (oxygen vacancies may also significantly im-
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FIG. 4: T–ain phase diagram and free-energy differences in (100)-oriented BCO thin films. (a) Phase diagram as a
function of temperature and in-plane lattice parameter. (b) Helmholtz free-energy differences among competitive

polymorphs at ain = 3.875 Å, (c) ain = 3.930 Å, (d) ain = 3.988 Å. Vertical lines and black arrows indicate
T–induced magnetic and structural phase transitions, respectively. Blue and green dotted lines correspond to

Helmholtz free-energy differences for the M and O phases, respectively, calculated without considering spin-phonon
coupling effects. From, [28] C. Cazorla, J. Íñiguez, Giant direct and inverse electrocaloric effects in multiferroic thin

films, Phys. Rev. B 98 (2018) 174105.

pact the phase competition in this material [89]). At
zero-temperature conditions, a strain-driven T → M
phase transformation has been predicted to occur at
ain = 3.925 Å that involves rotation of the polarization
and the appearance of anti-phase oxygen octahedral ro-
tations along the three pseudocubic directions [28]. The
O phase remains close in energy to the M polymorph
over the whole ain interval but never becomes stable at
zero temperature. Meanwhile, the Néel temperature of
epitaxially grown BCO thin films decreases mildly with
increasing ain [28].

Cazorla and Íñiguez have performed first-principles
Helmholtz free-energy calculations within the quasi-
harmonic approximation for the three relevant BCO
polymorphs to determine their relative stability as a func-
tion of T and ain (Sec.IV) [28]. The predicted T–ain
phase diagram of epitaxially grown BCO thin films is
shown in Fig.4a. For relatively small ain’s, it is found
that the T phase dominates and extends its stability re-
gion to temperatures much higher than observed in bulk

BCO [3]. The reason for such a T stability enhance-
ment is that the competing O polymorph remains highly
strained and hence its free energy increases considerably
as compared to the bulk case. As ain is increased, the
T phase eventually is replaced by the O and M poly-
morphs, yielding a very rich phase diagram that exhibits
concurrent structural and spin-ordering transformations.

Figures 4b–d show the calculated Helmholtz free-
energy differences ∆F̃harm between the three relevant
BCO polymorphs expressed as a function of T and ain
[28]. Those calculations take into account all possible
sources of entropy, namely, magnetic and vibrational,
and the interplay between spin disorder and lattice vibra-
tions. It is found that at high temperatures (T ≳ 600 K)

the vibrational contributions to F̃harm always favor the
O and M phases over the T . Nevertheless, whenever
a polymorph becomes magnetically disordered, the cor-
responding Helmholtz free energy decreases significantly
as a consequence of T–induced lattice phonon soften-
ings [28]. Accordingly, abrupt ∆F̃harm changes appear
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FIG. 5: Direct (O → M, red) and inverse (O → T , blue) electrocaloric effects in (100)-oriented BCO thin films at
room temperature estimated with first-principles methods and the Clausius-Clapeyron approach. (a) Sketch of the
E–induced phase transformations. (b) Critical electric field expressed as a function of in-plane lattice parameter; the

two involved electric field orientations are indicated in pseudocubic Cartesian notation. (c) Room-temperature
entropy and (d) adiabatic temperature shifts expressed as a function of in-plane lattice parameter. From, [28] C.

Cazorla, J. Íñiguez, Giant direct and inverse electrocaloric effects in multiferroic thin films, Phys. Rev. B 98 (2018)
174105.

in Figs.4b–d at the corresponding AFM → PM magnetic
transition temperatures. The strong spin-phonon cou-
plings in epitaxially grown BCO thin films are responsible
for the stabilization of the O–AFM(G) phase at temper-
atures near ambient and 3.88 Å ≤ ain ≤ 3.96 Å. Indeed,
when spin-phonon couplings are disregarded the O phase
becomes stable only at high temperatures when reaches
the paramagnetic state (Figs.4b–d) [28].

The ain region 3.89 Å ≤ ain ≤ 3.93 Å is particu-
larly relevant from a practical perspective since many
perovskite substrates present lattice constants in this
range. Interestingly, a T–induced reentrant behavior that
is reminiscent of bulk BCO under compression [3] oc-
curs therein: upon heating, the BCO film transforms first
from a FE (T –AFM(C) or M–AMF(G)) phase to a PE
(O–AFM(G)) state, then back to a FE (T –PM) phase,
and finally to a PE (O–AFM(G)) state. Of particular in-
terest is the PE O–AFM(G) region appearing near room
temperature Troom, which is surrounded by two FE phase
domains presenting markedly different features. In par-
ticular, the phase diagram in Fig.4a suggests that the

O phase may be transformed into the T or M states by
applying an electric field E along the [001]pc or [111]pc di-
rections, respectively. Such E–driven phase transforma-
tions involve drastic structural changes as well as mag-
netic transitions, hence big entropy changes are likely to
occur as a consequence.

Figure 5 shows the direct EC effect associated with
the field-induced O → M transformation (Fig.5a), in
which the entropy of the system decreases (∆S <
0, Fig.5c). Since the critical temperature for the
ferroelectric-paraelectric phase transition in BCO is close
to 1, 000 K [3], thermal effects on the electric polar-
ization can be disregarded near room temperature [i.e.,
∆P (T ) ≈ ∆P (0) in Eqs.(28) and (29)]. For the small-
est ain values, a maximum adiabatic temperature change
∆T of +10 K (Fig.5d) is estimated for a maximum crit-
ical electric field of 110 kVcm−1 (Fig.5b). The size of
this effect and of the accompanying critical electric field
decrease under increasing ain, as the region of M sta-
bility is approached. Similarly, Fig.5 shows the inverse
EC effect associated with the field-induced O → T trans-
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formation (Fig.5a), in which the entropy of the film in-
creases (∆S > 0, Fig.5c). A maximum ∆T of −50 K
(Fig.5d) is estimated for a maximum critical electric field
of 500 kVcm−1 at ain = 3.93 Å (Fig.5b). The magnitude
of this effect and of the corresponding Ec decrease with
decreasing ain, as the region of T stability is approached.

The predicted giant ∆T and ∆S values, which can be
achieved with relatively small driving fields, turn epitax-
ially grown BCO thin films into very attractive EC mate-
rials. For instance, the coexistence of direct and inverse
EC effects suggests a possible refrigeration cycle based
on the direct transformation between the high-entropy
FE T and the low-entropy FE M phases as induced by
E rotation, with a cooling performance equal to the sum
of the individual O ↔ T and O ↔ M cycles. More-
over, chemical substitution appears to be an alternative
strategy for stabilizing phases that are similar to the M
(alike to the ground state of BiFeO3 [82]) and O (the
most common among perovskites [90]) polymorphs dis-
cussed here, and to control the corresponding magnetic
transition temperatures [91]. One particular example
is provided by BiCo1−xFexO3 solid solutions, where a
morphotropic transition between a T –like and a M–like
phase is observed to occur at room temperature [92 and
93]. Likewise, bulk Bi1−xLaxCoO3 appears to be a good
candidate where to realize field-driven O → T transfor-
mations [3]. Hence BCO offers a variety of experimental
possibilities to achieve giant EC, thus bringing new ex-
citing prospects to the field of solid-state cooling.

B. Bulk hybrid perovskite CH3NH3PbI3

Hybrid halide perovskites described with the general
chemical formula ABX3 (X = F, Cl, Br, or I) consist of
inorganic BX6 octahedra, with B ions typically being Pb
or Sn, and A organic molecular cations (e.g., CH3NH3,
see Fig.6a). The archetypal hybrid halide perovskite is
CH3NH3PbI3 (MAPbI3), which has received a lot of at-
tention during the past decade owing to its desirable solar
matching optical bandgap, long carrier lifetime and dif-
fusion length, among other remarkable functional prop-
erties [94–96].

Halide perovskites in general (e.g., HC(NH2)2PbBr3
and MD–NH4I3 [97]) display elementary properties that
are not observed in the analogous perovskite oxides,
such as structural softness, lightweight, and low syn-
thesis temperatures [98]. On the other hand, the ex-
istence of ferroelectricity in halide perovskites remains
a controversial and long-lasting research topic. For in-
stance, piezoelectric force microscopy and scanning elec-
tron microscopy studies have reported polar domains in
tetragonal MAPbI3, and weak ferroelectricity has been
suggested by dielectric, piezoelectric and second har-
monic generation measurements [99]. However, tradi-
tional methods that identify ferroelectric insulators con-
vincingly fail to characterize the polar properties of
MAPbI3 due to the technical difficulties ecountered in

the differentiation between ferroelectric and ferroelastic
domains in this material [100].

At temperatures slightly above ambient conditions,
MAPbI3 adopts a highly-symmetric cubic phase (space
group Pm3m) that is centrosymmetric and consequently
cannot exhibit macroscopic electric polarization. Mean-
while, neutron powder diffraction experiments have
shown that at room temperature the molecular cations in
MAPbI3, MA, are rotationally disordered [101]. Consis-
tently, both ab initio and classical molecular dynamics
simulations have revealed fast reorientational dynamics
of the molecular cations with small relaxation times of
∼ 1 ps near room temperature [51, 102, and 103].

It is worth noticing that the MA cations in MAPbI3
present an intrinsic electric dipole since individually they
do not fulfill inversion symmetry. Therefore, under the
action of an external electric field the MA orientational
disorder can be partially frustrated and the molecular
cations aligned, thus inducing some sort of extended po-
lar ordering. Such a E-induced MA ordering effect could
potentially lead to large EC effects due to the concomi-
tant reduction in orientational entropy carried out by
the molecular cations. Actually, colossal barocaloric ef-
fects induced by hydrostatic pressure (i.e., |∆T | ≈ 50 K)
have been recently reported for plastic crystals present-
ing orientational order-disorder phase transitions like
neopentylglycol [104–107].

Liu and Cohen have employed MD simulations and
classical force fields to investigate how molecular ordering
in MAPbI3 responds to external electric fields, and what
EC effects result from the accompanying polar response
[29]. In particular, the authors used a standard AMBER
force field recently developed by Mattoni et al. [51] to
estimate directly (Sec.V) room temperature EC effects
induced by electric fields of intensities 0 < E < 4 MV/cm
(Fig.6b). The MD simulations involved the use of large
supercells containing 96,000 atoms, Nosé-Hoover ther-
mostats, Parrinello-Rahman barostats, and simulation
times longer than 2 ns [29].

Field-induced MA dipole alignment has been observed
in Liu and Cohen’s room-temperature MD simulations
as shown by the shift in the peak of the probability dis-
tribution function estimated for the molecular dipoles
calculated along the three Cartesian directions, {µi}x,y,z
(Fig.6c). However, it has been found that even under rel-
atively high electric fields of the order of |E| ∼ 1 MV/cm
the MA cations still can rotate, thus the resulting elec-
tric polarization is still quite small (i.e., P ∼ 0.01 C/m2

[108]). This behaviour is in sharp contrast to what is
observed for archetypal ferroelectrics like BaTiO3 and
PbTiO3 where much larger electric dipole moments are
achieved upon application of much smaller electric bias
(i.e., P ∼ 0.1 C/m2 [82]).

The adiabatic temperature changes predicted for
MAPbI3 at ambient conditions amount to 0.3 K for an
electric field of 1 MV/cm and to 4.1 K for E = 4 MV/cm
(Fig.6d) [29]. The value of these external electric fields
are quite high and thus leakage current issues are likely to
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FIG. 6: Electrocaloric effects in the hybrid perovskite CH3NH3PbI3 predicted with molecular dynamics simulations
and the direct method. (a) Sketch of the atomic structure of MAPbI3. C, H, N, Pb, and I atoms are represented
with brown, pink, violet, blue, and purple spheres, respectively. (b) Adiabatic thermal change of MAPbI3 in

response to electric fields of different intensity. (c) Probability distribution functions of the molecular CH3NH3

dipoles under several electric fields. The insets show the orientations of the molecular dipoles obtained from
molecular dynamics simulations performed at 300 K. (d) Temperature and electric field dependence of the

electrocaloric effect in MAPbI3. Modified from, [29] S. Liu, R. E. Cohen, Response of methylammonium lead iodide
to external stimuli and caloric effects from molecular dynamics simulations, J. Phys. Chem. C 120 (2016) 17274.

occur in practice due to the small band gap of MAPbI3.
In addition, the estimated adiabatic temperature shifts
are quite modest in comparison to those observed in fer-
roelectric oxide perovskites, which may oscillate from few
degrees up to 20 K [16]. Nevertheless, the temperature
dependence of the calculated ∆T around T = 300 K is
very weak (Fig.6d), which may be favorable for mini-
mizing practical hysteresis and irreversibility limitations
[9, 106, and 107]. Such a ∆T temperature behaviour typ-
ically is found in relaxor ferroelectrics (see next subsec-
tion), which hints at the structural similarities between
MAPbI3 and other materials that exhibit polar domains
at the nanoscale and low temperatures [109].

Liu and Cohen also have explored the combined action
of epitaxial strain and electric fields on the polar and elec-

trocaloric properties of MAPbI3 at room temperature.
In fact, the application of mechanical stresses offers very
promising avenues in the field of caloric materials and
solid-state cooling [110–112]. It has been found that un-
der a small compressive biaxial strain of 2% a more com-
plete alignment of the MA cations can be achieved for
an electric bias of 1 MV/cm (namely, a two-fold enhace-
ment in comparison to the unstrained case [29]). Like-
wise, a significant increase on the electrocaloric response
of MAPbI3 has been demonstrated: for a compressive
epitaxial strain of 4% the estimated ∆T ’s are about two
or three times larger than those calculated for the analo-
gous free-standing system (e.g., 5.2 K for E = 2 MV/cm
[29]). These MD results, although may seem not rele-
vant from an applied point of view, illustrate very well
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FIG. 7: Ferroelectric and electrocaloric properties of the
relaxor BaZr1−xTixO3 estimated with an effective
Hamiltonian model and molecular dynamics (direct

method) and Monte Carlo (indirect method)
simulations. (a) T -dependence of the polarization under
electric bias. The direction of the electric field is fixed
and its module changes from 2 · 107 to 3 · 108 V/m at
increments of 2 · 107 V/m. (b) Adiabatic temperature
change associated with the EC effect expressed as a
function of T and electric field. Modified from, [30] Z.
Jiang, S. Prokhorenko, S. Prosandeev, Y. Nahas, D.

Wang, J. Íñiguez, E. Defay, L. Bellaiche, Electrocaloric
effects in the lead-free Ba(Zr,Ti)O3 relaxor ferroelectric
from atomistic simulations, Phys. Rev. B 96 (2017)

014114.

the capabilities of atomistic simulations in what regards
the analysis and prediction of complex dynamical effects
that may cause original thermal behaviour in functional
materials.

C. Relaxor ferroelectric BaZr1−xTixO3

Relaxor ferroelectrics are a class of ferroelectric materi-
als that present a frequency- and temperature-dependent
dielectric response to electric fields while remaining
macroscopically paraelectric down to absolute zero tem-
perature [113–115]. Relaxor ferroelectrics typically ex-
hibit high dielectric constants and also large electrostric-
tion [116]. The microscopic origins of these phenomena
are thought to be related to the existence of polar nanore-
gions below a particular temperature called the Burns
temperature [117]. Examples of archetypal relaxor fer-
roelectrics are lead magnesium niobate (Pb3MgNb2O9

–PMN–), lead scandium niobate (PbSc1−xNbxO3 – PSN
–) and solid solutions like barium titanate-bismuth zinc
niobium tantalate (BT-BZNT) and barium titanate-
barium strontium titanate (BT-BST) [118–120].
Relaxor ferroelectrics appear to be also promising elec-

trocaloric materials in which original thermal behaviour
is driven by electric fields. For example, relatively large
∆T ’s of 2–3 K have been measured directly in PMN-
based oxides under small electric fields of 90 kV/cm [113].
The magnitude of the ∆T/E coefficient is largest at criti-
cal points in which the paraelectric to ferroelectric phase
transition changes from first-order type to second-order
type. Another illustrative example is provided by the
lead-free relaxor ferroelectric Ba(Zr0.8Ti0.2)O3 in which
a large adiabatic temperature change of ∼ 5 K has been
measured over a broad temperature interval of 30 K [121].
Jiang et al. have used a first-principles based effective

Hamiltonian along with classical molecular dynamics and
Monte Carlo simulations to investigate the electrocaloric
response of the relaxor ferroelectric Ba(Zr0.5Ti0.5)O3

(BZT) in the temperature interval 100 ≤ T ≤ 500 K
(Fig.7) [30]. The employed BZT effective Hamiltonian
has been shown to reproduce successfully the character-
istic temperatures measured in experiments as well as the
existence and dynamics of polar nanoregions [122]. Jiang
et al.’s simulations involve very large simulation cells con-
taining ∼ 10, 000 atoms and the use of the indirect and
direct estimation techniques described in Secs.III and V.
Figure 7 shows the estimated variation of the electric

polarization in the BZT relaxor as a function of tempera-
ture and electric field module along with the correspond-
ing electrocaloric adiabatic temperature changes. Rela-
tively large ∆T ’s of about 8 K are predicted near room
temperature for moderately large electric fields of the or-
der of ∼ 1 MV/cm. The temperature and electric field
dependences of the estimated adiabatic temperature in-
tervals are not monotonous, as it is expected from relaxor
ferroelectrics [120]. In particular, small values of the adi-
abatic electrocaloric coefficient, defined as (∂T/∂E)S , are
obtained at low E ’s, followed by a sustained EC enhance-
ment up to a maximum electric field value beyond which
it decreases.
Interestingly, Jiang et al. have found that indirect

and direct estimations of the electrocaloric effect in BZT
do not coincide at temperatures below the Burns point
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(Fig.7b) at which polar nanoregions emerge [30]. The
reasons for such numerical inconsistencies are related
to the occurrence of non-ergodic low-temperature pro-
cesses. In this case, direct estimation techniques can
reproduce non-equilibrium phenomena with certain re-
liability and thus should be regarded as the methods of
choice for simulating EC effects in relaxor ferroelectrics.
Actually, a similar failure of indirect methods caused
by nonergodicity has been demonstrated experimen-
tally for the ferroelectric relaxor polymer poly(vinylidene
fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-
TrFE-CFE)] [123]. The present study illustrates once
again the capabilities of first-principles based methods
for simulating complex atomistic behaviour in promising
materials that render sizable electrocaloric effects.

VII. CONCLUSIONS

First-principles based computational techniques for
simulation of electrocaloric effects in oxide perovskites
and similar polar materials are already madure and
well established. Some of these simulation methods
(e.g., quasi-harmonic free-energy methods and effective
Hamiltonians) were originally developed for the study of

temperature- and field-induced phase transformations in
materials and have already demonstrated great success
in many research disciplines.
The suite of computational approaches reviewed in this

Chapter can be used to reproduce with reliability the
electrocaloric performance of complex materials like mul-
tiferroics, in which the electronic and lattice degrees of
freedom are strongly coupled, organic-inorganic halide
perovskites, in which the molecular cations can be orien-
tationally disordered, and ferroelectric relaxors, in which
the existence of polar nanoregions and non-ergodic pro-
cesses underpin their physical behaviour. Analogous elec-
trocaloric simulation success can be achieved for other
families of functional materials that exhibit complex and
unconventional, as well as standard, responses to electric
fields.
First-principles based simulation of electrocaloric ef-

fects, therefore, can help enormously in developing new
materials and strategies for boosting solid-state cooling
that relies on the application of electric fields. Thus,
the current pressing challenge of finding new refrigera-
tion technologies that, on one hand, are environmentally
friendly and, on the other hand, highly scalable in size,
may greatly benefit from the outcomes of such reliable
and physically insightful simulation methods.
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Íñiguez, J., Negative capacitance in multidomain ferro-
electric superlattices, Nature 534, 524 (2016).

[71] Frenkel, D. & Smit, B. Understanding Molecular Sim-
ulation. Academic Press, Inc., 6277 Sea Harbor Drive
Orlando, FL., United States, ISBN:978-0-12-267351-1.

[72] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. & Teller, E., Equation of state calculations
by fast computing machines, J. Chem. Phys. 21, 1087
(1953).
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